Maintaining a Personal Touch in an Increasingly Digital World
Business Continuity and Disaster Recovery - Business Technology...
Open-Source Data Enabled Operability
Winning the Talent War in the Digital Age
Digital Acclerating Duke Energy's Transformation
Brian Savoy, Senior Vice President, Chief Transformation and Administrative Officer, Duke Energy Corporation
HEADLINE: 5 TIPS FOR A ROBUST EAM CLOUD STRATEGY
ERICA FERRO, VP OF PRODUCT MANAGEMENT FOR CLOUD AND CONTENT SOLUTIONS, HITACHI ABB POWER GRIDS
KEYS TO REACHING THE PEAK OF A CYBER SECURITY PROGRAM JOURNEY
CHRISTINE VANDERPOOL, VP IT SECURITY & CISO, FLORIDA CRYSTALS
CX LEMONADE
SHANE BRAY, CXO, BENEFITS DELIVERY & ADMINISTRATION, WILLIS TOWERS WATSON
Thank you for Subscribing to CIO Applications Weekly Brief

Evolving Data Center Network From Cloud-Ready To Cloud-Native
PARANTAP LAHIRI, VP, NETWORK AND DATACENTER ENGINEERING AT EBAY


PARANTAP LAHIRI, VP, NETWORK AND DATACENTER ENGINEERING AT EBAY
Networking in the enterprise domain grew up to provide connectivity between office buildings and provide access to Internet and corporate services within data centers. Since many enterprise applications came as third party software, physical networks had to facilitate and enforce segmentation and security needs. The networks were complex, inconsistent and fragile with heavy dependence on a set of in-house support staff as well as dedicated engineers from vendors.
Other than configuration inconsistency and failures due to lack of change rigor, the primary factor that contributed was the inherent weakness of protocols like “spanning-tree” that were used to ensure loop-free forwarding path for switching domains. Layer 2 switching domains were needed to support VLAN (Virtual Local Area Network) which has been an integral part of most enterprise networks to ensure IP mobility, enforcing firewalls as the default gateways etc. These domains frequently suffered from broadcast storms that melted the networks due to loop creation. More so, loop-free requirements created topologies that resulted in congestion
Fast forwarding a little, when companies went into delivering online services, many of the same enterprise networks were used to host services. For online services that are expected to be available for at least 99.99% of time, these enterprise network designs have been a fundamental misfit.
Now, to take this discussion one level deeper, let’s analyse the impact of a typical enterprise network on cloud-ready workloads first and then on cloud-native workloads.
However, cloud-native workloads are challenging this very premise. By definition, cloud-native workloads are formed out of applications getting decomposed into microservices. These microservices get automatically deployed, scaled and managed as containers through orchestration systems like Kubernetes etc. Now the question becomes, in an environment with heavy dependency on incumbent physical network services, should the cloud-native applications take any dependency on the services provided by the underlay network or technology leaders should act cautiously and ensure proper decoupling of dependency.
To get deeper into this discussion, it is important to understand how the cloud-native workloads and orchestration systems have evolved themselves. Orchestration systems along with other approaches like service-mesh etc. are continually advancing to take care of many other application needs beyond simple placement of the containers on appropriate nodes.
Firstly, they are facilitating a lot more granular implementation of security controls that go beyond simple enforcement on protocol type and ports, and secondly they are facilitating advanced capabilities to balance and distribute workload sessions. These capabilities are implemented on the server themselves in a highly scaled out and well-managed way. So bringing some of those complexities back into the underlay network is somewhat redundant. To put it more bluntly, the traditional enterprise network controls should get out of the cloud-native way. They can definitely manage the legacy environments in case of a brown field situation, and enforce some base layer security controls but that’s where they should draw the line.
Now, to discuss the actual needs of cloud-native services, the workloads along with supporting services like Hadoop, AI/ ML and distributed storage etc., ideally want unlimited server-to-server east-west capacity from the network. They also need quick correlation of the network issues and application issues while diagnosing service impairments.
Thus, in order to cater to the needs of cloud-native applications many modern cloud scale data centers have built dense mesh Layer 3 routed networks using mainly simple and standardized protocols like BGP (Border Gateway Protocol). Typically the platforms used in these networks are based on commoditized chipsets which provide high-bandwidth at a very reasonable cost points. Automation focus is placed on producing consistent build standards along with automated isolation of network degradation and remediation. Technology leaders have been guarding these networks from taking on unnecessary complexity to ensure that each domain delivers the right services for the right reasons. Interestingly, building the highvolume interconnect capacity has impacted the networking budget favorably and made the network a lot more robust.
To summarize, the journey to cloud-native infrastructure entails not only decomposing applications into microservices running on containers but also looking at the infrastructure in a holistic way. Entrusting the orchestration systems to manage the granular security and session controls and letting the underlay network provide speeds and feeds, could be the winning formulae.
I agree We use cookies on this website to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies. More info
Featured Vendors
-
Jason Vogel, Senior Director of Product Strategy & Development, Silver Wealth Technologies
James Brown, CEO, Smart Communications
Deepak Dube, Founder and CEO, Datanomers
Tory Hazard, CEO, Institutional Cash Distributors
Jean Jacques Borno, CFP®, Founder & CEO, 1787fp
-
Andrew Rudd, CEO, Advisor Software
Douglas Jones, Vice President Operations, NETSOL Technologies
Matt McCormick, CEO, AddOn Networks
Jeff Peters, President, and Co-Founder, Focalized Networks
Tom Jordan, VP, Financial Software Solutions, Digital Check Corp
Tracey Dunlap, Chief Experience Officer, Zenmonics